我们写心得不千篇一律、不人云亦云,敷衍写出的心得体会一定不能给人带来启发,只有保证它的质量,才能得到一个不错的反馈,下面是好文档范文小编为您分享的植树问题心得体会6篇,感谢您的参阅。
植树问题心得体会篇1
3月4日,学校组织大学生参加了植树造林的社会实践活动。我们乘坐校车颠簸了一路于下午2点到达目的地——万盛。穿着统一的黄色t恤,戴着鲜艳的橙黄色帽子,挂着灿烂的笑容,同学们的到来为荒凉的大山注入了一股青春和活力。
新传的.学生依次排成队铺满弯曲的山林小道,为山上的树苗供水。像传递奥运火炬似的,每个人接过那盛满水的桶时都小心翼翼的,全神贯注,仿佛这水桶里载的不只是水了,而是满满的希望和沉甸甸的责任。
领导在植树之前激动地说道:“我们大学生每人植100棵树,便会种出一片大学林!”的确,当我们植完后,从车上遥望这片浇浸了自己的汗水的“大学林”时,仿佛能嗅到几十年、几百年之后这片绿荫散发的清香,听到鸟儿的欢鸣。此番义务植树,给了我许多的启示:
个人的力量是有限的,甚至是微不足道的,但当几百股这样的力量汇聚起来时,将足以改变我们的生存环境;
书本不是大学生唯一的知识源泉和精神食粮,有意义的社会实践活动不仅开阔视野、增长知识,更能陶冶情操、铸炼品性。
多出来象牙塔走走,你会发现这个社会为你提供了一个足够大的可以挥洒汗水、实现梦想的舞台!
植树问题心得体会篇2
“植树问题”是人教版新课程标准实验教材五年级上册第七单元数学广角中的问题,而这个内容以前是安排在四年级下册。在植树问题中,主要是教会学生如何思考,如何分析问题并且将这些知识能潜移默化的给大家以思考路线。
教材将植树问题分为三个层次:两端都栽、两端不栽和环形(一端不栽)。教学过程中需向学生渗透数形结合、探究推理和一一对应的数学思想,同时使学生将这一数学问题拓展,感知到这是一种数学额模型,可以提高学生的思维拓展能力。
我这节课主要解决的是两端都栽的植树问题,通过观察、操作及交流活动,探索并认识将问题探究推理的方式,并能将这种认识应用到解决类似的实际问题之中。运用数形结合的思想,培养学生借助图形解决问题的意识。并借助图形,利用一一对应的规律来解决实际问题。反思整个教学过程,我认为本节课有以下几点做得比较好:
首先,设计层次分明。整节课设计基于学生的实际情况,课前通过猜谜语的方式,吸引学生的注意力,然后通过探索手指数与间隔数的关系,人民大会堂前柱子数与间隔数之间的关系。通过这两个问题推理探究到新知识——植树问题。给与学生一个较大的数据,不能一眼就看出结果,但是能通过猜想假设,并运用一一对应的这种关系来得到对于两端都栽的植树问题得到植数棵树比间隔数多一。可是在这其中就包含了对于植树这一类的数学模型我们可以通过简化的线段图来简化思考过程,淡化图形意识。毕竟对于10多岁的小孩子,他们的潜意识还是以完整的图形思维为主,为了培养他们简化思考过程。其次,联系生活进行拓展思维。当学生体验到植树问题,但如何去将这种模型推广化就值得思考!体验是学生从旧知向隐含的新知迁移的过程。设计中,虽然创设了情景,但一次的体验不能达到继续建构学习的水平。所以,这节课我多次向学生提供体验的机会,而且创设能够激发学生共鸣的情境。从植树、路队、楼房、锯木等身边熟悉的事物,引发学习兴趣,产生共鸣,激发探究欲望。
这节课虽然层次分明,联系实际,但问题仍然存在。
一、学生认知起点与知识结构的逻辑理解性存在差异,无法将规律运用于求路长的问题。只有部分学生掌握,这恰恰说明学生能找规律不会用规律。也就是在发现规律与运用规律间缺少了的链接,我要加强对规律的扩散教学,比如:得出规律时,可以说说“间隔数=棵数—1,路长=间隔数×间隔长”知识的扩散。
二、把握每一个细节,问题即时解决,站在学生的角度去思考问题。比如:学生的质疑,间隔长和间隔数之间的区别,两端和两边的区别,应该考虑学生的知识构建,学生的知识认知一般是在具体情景中通过活动体验而自主建构的。在这一次的教学设计中,虽然我创设了情境,但学生仅凭一次体验是不可能全部达到继续建构学习主题的水平,可以利用实例来帮助学生学习。
对于自身的学习还有待加强,对于知识的拓展,像“数学史上有个20棵树植树问题”!我们不能仅仅停留在知识的表面,而要试着走出去,并在教学中体现出来,引发学生的思考、探究、创新。
植树问题心得体会篇3
一、遇到的问题:
?植树问题》是三年级第一学期教材数学广场中的教学内容,也是二期课改中数学拓展性的知识。是曾经无数次被搬上?舞台?演绎出了许多经典课例。因此在教学准备阶段,我认真地研读了很多课例,发现在诸多课例中,存在着这样一个共同的特点: 任课教师都特别重视关于“植树问题”的三种不同类型的区分,即所谓的“两端都种”“只种一端”与“两端都不种” 。普遍采用了“学生独立探究(或分组探究)、反馈交流、教师总结”的模式进行教学。并将“三种情况”的区分以及相应的计算法则(“加一”“不加不减”“减一”)看成一种“规律”要求学生牢固地掌握,从而能在面对新的类似问题时不假思索地直接加以应用。 但是在这些课例的反思中,我又发现了一个共同的特点,很多学生能找到规律但不能熟练地运用规律,不能把植树问题的解决方法与生活中相似的现象进行知识链接。
二、第一次试教分析:
我根据教学内容的特点和学生的实际情况,在探究两端都植的规律时安排了动手操作,想通过引导学生积极参与,使学生在多种形式的教学活动中,加深对植树问题棵数和间隔数之间的关系的认识与理解。活动的设计是这样的:
出示一道开放性的题目:一条公路长( )米,每隔5米植一棵(两端都要植),需要多少棵?让学生自己确定这条路的长度,
从而探究出两端都要植树时的间隔数和棵数之间的关系,要求是这样的:设计:全长( )米,每隔5米,有( )个间隔,种( )棵树让学生独立思考,画线段图,填表,汇报。本以为自己设计的教案考虑到了学生的生活经验,结合生活实际,重视了数学思维培养,方法的渗透,是可行的,学生们应该是能够掌握的。可是在实际的教学过程中,在“植树”时还是跃跃欲试的学生们到“探究规律” 时一个个都像被打败公鸡,毫无斗志与反应。勉强参与的总是那几个平时成绩比较优秀的学生。看来这样的设计无法顾及全体学生的发展。没有了学生的主体参与,何来思维的培养,主题的建构呢?我开始反思:为什么学生不能找到简单植树问题的规律呢?为什么缺乏参与的积极性呢?学生一脸的茫然。经过反复的思考,我想到了我设计的探究活动有一定的问题,对于学生来说太抽象,太难了,自己确定长度时,要考虑到平均分还要分完,只给学生一条线段,他们不知道从何下手。我请教有经验的老师们,自己又反复琢磨,调整了自己的教学过程,从简单入手的思想,使这节课主线更清晰明朗了,即从生活中抽取植树现象,并加以提炼,然后通过猜想,验证,建立数学模型,再将这一数学模型应用于生活实际。这样能灵活构建知识系统,注重教学内容的整体处理。又能活用教材,对教材进行了整合和重构,让资源启迪探究。激发了学生探究的欲望。让学生比较系统地建立植树问题的三种情况,即两端都植;两端都不植;封闭情况下的植树问题(一头植和一头不植)。
三、第二次试教分析:
我把目标制定为:知识性目标:利用生活中的问题,通过动手操作的实践活动让学生发现分的段数与植树棵数之间的关系,并能利用规律来解决简单植树的问题。过程性目标:进一步培养学生从生活实际问题中发现规律,应用规律解决问题的能力。
为了让学生掌握物体个数与间隔数的关系,课前我布置学生去数一数路灯排列有什么规律,初步感受物体个数与间隔数的关系,这样首先让学生在生活中学会有所观察,有所思索,有所实践。既能激起学生强烈的求知欲,做好课前准备,又能体会到数学知识在生活中的实际应用价值。在教学过程中,我创设情景聘请学生做环境设计师,说明学校南墙边有一段40米的小路,学校准备在路的一侧种树,按照每隔10米种一棵的要求设计一份植树方案,并说明设计理由,择优录用。我先请学生估计产生不同的意见,此时需要验证,怎样验证,学生想出不同的办法,给学生动手操作的时间和空间,让学生在操作中感悟,学生通过摆一摆,数一数,得出结果。学生的思绪一下打开了,最后出现了三种方案:第一种,两头都种,有5棵数。这样可以让学校有更多的绿色。第二种有3棵,头尾都不种。因为节约成本。第三种有4棵。种头不种尾;或者相反;又或者考虑树的实际生长空间不够,成本既不太高,绿色又不会太少。在这个环节,学生在实际操作中初步感受植树问题的特征,这个时候我利用模具加以归纳、总结,形成规律。学生靠自己主动、独立地完成所学任务,发现规律,发现特点,找到窍门,感到非常高兴,记得牢固。
但是问题又就出现了,在和学生开始列举生活中有关植树的问题的事情,然后运用学生自己发现的规律,解决插彩旗,仪仗队队伍的长度、走楼梯、锯木头等问题。为什么学生能够找到简单植树问题的规律“间隔数+1=棵数”“间隔数-1=棵数”却无法运用呢?在发现规律与运用规律间缺少了怎样的链接?
四、第三次试教分析:
首先,创设了情境,学生仅凭一次体验是不可能全部达到继续建构学习主题的水平。不仅需要向学生提供多次体验的机会,而且还需要创设能够激发学生共鸣的情境。在举例过程中,比如手指之间的点段,座位之间的位置关系,并且还利用了“一刀两断”来说明锯木头的问题,让我惊喜不已。学生真正的生活经验是他们身边熟悉的事物,这时的学生才会真正感兴趣,才能够产生共鸣,才易激发探究的欲望,让活动化的数学学习有个坚实的基础。
其次,书上的例题直接给出了植树的图片,棵数、段数一目了然,不利于学生进行独立的、深入地思考。如果在动手之前,再补充一句:根据题目要求,你想怎么种?有几种种法?画一画线段图或者用手边的东西代替树摆一摆。再出示3种植法的图片,学生证实自己的考虑是全面的。这样的设计会使学生的印象更加深刻。借助数形结合将文字信息与学习基础结合,使得学习得以继续,使得学生思维发展有凭借,才能使得数学学习的思想方法真正得以渗透
五、反思:
1、通过自主探索的活动,让学生获得学习成功的体验,增进学好
数学的信心。
结合学生的年龄特点和教学内容,我设计了很多需要学生自主探索的活动。例如:在创设情境、导入新课的第2个小环节中“如果你是园林工人,你会怎么种?”,让学生自主探索出在一条路上植树时,有3种不同的情况:“两端都种”“两端都不种”“只种一端”;再如:在自主探究、建立模型这一环节中让学生自定路长和间距,通过画图的方法验证“间隔数”与“棵数”之间的规律。又如:在最后联系实际,综合练习时,我放手让学生自选习题进行解答。
2、渗透“以小见大”的数学思想方法,培养学生数学思维能力和解决问题的能力。
“授人以鱼不如授人以渔”,新课程理念有个更具“与时俱进”的显著特点是对渗透数学思想方法的关注。在本课的教学过程中,要充分利用学生想检验大数目时遇到困难,可引导通过“以小见大”来找规律加以验证,让学生通过观察、猜测、实验、推理与交流等活动。从而不失时机给学生渗透常用的数学思想方法,为将来的后续学习积累更丰富实用的思想经验。
教学过程是这样的:在学生已经掌握了两头都植的规律的探究方法后,让学生分组自主寻找两头都不植的规律,学生通过自己动手画,自己整理表格,很快就发现了其中蕴含的规律,产生了很强的成功感,同时也有了一份自信,极大的调动了学生积极性。
3、关注植树问题模型的拓展和应用,注意反映数学与人类生活的密切联系。
植树问题心得体会篇4
20xx年1月4日,我有幸参加首届智慧教室创新教学赛课活动,我执教的《植树问题》是《义务教育教科书·数学》人教版五年级上册“数学广角”的内容,其目的是向学生渗透一些重要的数学思想方法。通过教学学生熟悉的植树情境,引导学生借助线段图,经历猜想、实验、抽象等数学活动过程,探索间隔与点之间的数量关系,建立植树问题的数学模型,并运用模型解决实际问题。
根据以往的教学经验,这部分内容对于学生来说是不容易理解和掌握的。而智慧教室运用现代化手段切入整个教学过程上课堂变得简单、高效、智能。因此,我在本课的教学中充分发挥智慧教室的辅助作用,让学生通过课前自学、课中交流。随时检测,以实现快速准确掌握每位学生学习状态,有针对性地进行指导,有助于开发学生自主思考与学习的能力。本课题的教学内容,在教学过程中对教材进行了适当的整合,并充分利用学生原有的知识和生活经验,来组织学生开展各个环节的教学活动。
1.适度改编。原教材例题是“同学们在全长100米的小路一边植树”,为了更贴近学生的生活实际,更加体现“化繁为简”的数学思想,我把它改编成“城区路面改造,为了更加美化绿化,园林工人在全长为1000米的城区道路的一边植树”;
2.亲历思想。引导学生经历解决问题的全过程,教学时,结合情境图出示问题,通过猜测验证的方法经历分析思考的全过程并初步感受到“化繁为简”的数学思想,可以从简单的'事例中发现规律,然后应用找到的规律解决原来的问题。
3.建构模型。重点培养学生建立数学模型的能力,通过画图、演示等方法帮助学生思考,把分割点数和栽树的棵树一一对应起来,发现并初步总结栽树的棵树与间隔数之间的关系,从而建立植树问题的数学模型,并通过生活运用不断强化植树问题的数学模型。
而智慧教室软件正是运用现代化手段切入整个教学过程,让课堂变得简单高效、智能。因此,我在本课的教学中充分发挥智慧教室的辅助作用,让学生通过课前自学、课中交流、随时检测、以实现快速准确掌握每位学生学习状态,有针对性地进行指导,从而有助于开发学生自主思考与学习能力。
智慧教室与传统教学手段相比,智慧教室软件具有传统教学手段不具备的教学辅助功能。充分发挥发掘和利用智慧教室软件中的抢答、挑人、irs反馈系统、图片无限复制等功能,有利于达成教学目标,有效提高学生课堂探究的参与面和参与度。
软件功能的使用要有利于学生的探究,以生为本,以学生的学为出发点和归宿点,无论是哪项功能的使用,都要有利于促进学生的主动探究,如抢答功能等。
1.没有错误的技术,只有错误的选择。结合教学内容选择合适的技术手段,将有利于教学目标的达成,从而打造高效课堂。
2.不能为“智慧”而“智慧”,要让“智慧教室”成就“智慧教师”,让智慧教师完美智慧教室。
智慧教室是一个庞大复杂的系统,我暂时只是运用了其中的一些技术手段而已,触摸到了冰山的一角。只有我们不断学习和不断探索,希望能离“智慧”近一点。
植树问题心得体会篇5
在长乐路小学,听了赵文渊老师的一节植树问题。这节课通过几个环节的活动,让学生感知数与间隔的关系。根据教材和学生年龄的特点自主探究,你是园林工人应怎样做?最后联系实际生活,让学生来说说本节知识在生活中的体现。在练习中,着重逆向思维完成练习,通过课件体现知识的探究过程。
本节课完成了教学目标,但是由于教师过多的引导,使学生的自主探究任务没有能得到很好的'发挥。反思整个教学过程,发现单纯的用规律去解决实际生活中的植树问题,对学生有些难,所以在课堂中重视规律更强调方法,注重学生获取知识过程的体验是学生从旧知识向隐含的新知识迁移的过程。如果说生活经验是学习的基础,生生间的合作交流是学习的推动力,那么借助图形帮助理解是学生建构知识的一个拐杖。有了这根拐杖,学生们才能走得更稳、更好。
因此,在教学过程中,我们应注重了对数形结合意识的渗透。直接例题导入,引导学生可以画图模拟实际栽树,通过线段图的演示,让学生充分理解“间隔数”与“植树棵树”之间的关系,就此向学生渗透复杂问题简单化的思想,让学生自主选择短距离的路用画图的方式得出结果。这样把学习的主动权交给学生,发展了学生的潜能,培养了学生的实践能力和创新意识。
植树问题心得体会篇6
抽取出其中的数学模型,然后再用发现的规律来解决生活中的一些简单实际问题。解决植树问题的思想方法是实际生活中应用比较广泛的数学思想方法。植树问题通常是指沿着一定的路线植树,这条路线的总长度被树平均分成若干段(间隔),由于路线的不同、植树要求的不同,路线被分成的段数(间隔数)和植树的棵数之间的关系就不同。在现实生活中类似的问题还有很多,比如公路两旁安装路灯、花坛摆花、站队中的方针,等等,它们中都隐藏着总数和间隔数之间的关系问题,通常把这类问题统称为植树问题。
成功之处:
1.利用例1题目,渗透研究植树问题的思想方法:复杂问题——简单问题——发现规律——解决问题。让学生经历探索复杂问题的过程,经历猜想、实验、推理等数学探索的过程,掌握研究问题的思想方法,渗透“化繁为简”的数学思想方法,尝试从数学的角度运用所学的知识和方法寻找解决问题的策略。教学中启发学生利用在 10米、15米、20米的小路一侧栽树,通过画线段图借助图形让学生体会当两端都栽、两端都不栽、只栽一端,棵数与间隔数之间的关系,从而发现植树问题不同情况的数学模型,进而解决例1的问题,学生也就能快速解决问题了,并且能够做到不仅知其然,还知其所以然。
2.渗透了一一对应的数学思想方法。通过线段图的理解,学生发现了植树问题的不同情况的数学模型。为了更深入理解这一数学模型隐含的数学思想方法,让学生观察线段图,一棵树对应一个间隔,当两端都栽时,发现最后一棵树没有对应的间隔,所以棵数=间隔数+1;当两端都不栽时,发现最后一个间隔没有对应的棵数,所以棵数=间隔数-1;当只栽一端时,发现最后一棵数对应最后一个间隔,所以棵数=间隔数
不足之处:
由于归纳总结了三种类型的植树问题,导致练习只做了一题,学生没有及时的进行巩固,知识夯实不够充分。
再教设计:
控制好教学节奏,增加练习量,夯实巩固所学知识。
会计实习心得体会最新模板相关文章:
★ 植树的我作文6篇