在编写教案时,教师应该根据学生的兴趣点来设计吸引人的教育内容,教案可以包括课程中的跨学科内容,以促进综合性学习,好文档范文小编今天就为您带来了八年级数学下教案参考6篇,相信一定会对你有所帮助。
八年级数学下教案篇1
活动一、创设情境
引入:首先我们来看几道练习题(幻灯片)
(复习:平行线及三角形全等的知识)
下面我们一起来欣赏一组图片(幻灯片)
[学生活动]观看后答问题:你看到了哪些图形?
(各式各样的图案装点着我们的生活,使我们这个世界变得如此美丽,那么,请你用两个相同的300的三角板,看能拼出哪些图案?)
[学生活动]小组合作交流,拼出图案的类型。
同学们所拼的图形中,除了有我们学过的三角形,还有很多四边形,今天,我们一起来研究四边形,探索四边形的性质。(幻灯片出示课题)
活动二、合作交流,探求新知
问题(1):为什么我们把(甲)图叫平行四边形,而(乙)图不是平行四边形呢?你怎么知道这些四边形是平行四边形?(拿一模型,幻灯片)
[学生活动]认真观察、讨论、思考、推理。
鼓励学生交流,并是试着用自己的语言概括出平行四边形的定义。
学生交流,归纳:有两组对边分别平行的四边形叫做平行四边形。
并说明:平行四边形不相邻的两个顶点连成的线段叫它的对角线。
平行四边形用“”表示,如图平行四边形abcd记作“abcd”读作:平行四边形abcd。(幻灯片出示揭示课题)
问题(2):由平行四边形的定义,我们知道平行四边形的两组对边分别平行,平行四边形还有什么特征呢?
[学生活动]动手操作,小组演示交流。鼓励学生用多种方法探究。
小结平行四边形的性质:
平行四边形的对边相等
平行四边形的对角相等(这里要弄清对角、对边两个名词)
你能演示你的结论是如何得到的吗?(学生演示)
你能证明吗?(幻灯片出示证明题)
[学生活动]先分析思路尤其是辅助线,请学生上黑板证明。
自己完成性质2的证明。
活动三、运用新知
性质掌握了吗?一起来看一道题目:
尝试练习(幻灯片)例1
[学生活动]作尝试性解答。
八年级数学下教案篇2
教学目标
1.认识变量、常量.
2.学会用含一个变量的代数式表示另一个变量.
教学重点
1.认识变量、常量.
2.用式子表示变量间关系.
教学难点
用含有一个变量的式子表示另一个变量.
教学过程
Ⅰ.提出问题,创设情境
情景问题:一辆汽车以60千米/小时的速度匀速行驶,行驶里程为s千米.行驶时间为t小时.
1.请同学们根据题意填写下表:
t/时 1 2 3 4 5
s/千米
2.在以上这个过程中,变化的量是________.变变化的量是__________.
3.试用含t的式子表示s.
Ⅱ.导入新课
首先让学生思考上面的几个问题,可以互相讨论一下,然后回答.
从题意中可以知道汽车是匀速行驶,那么它1小时行驶60千米,2小时行驶2×60千米,即120千米,3小时行驶3×60千米,即180千米,4小时行驶4×60千米,即240千米,5小时行驶5×60千米,即300千米……因此行驶里程s千米与时间t小时之间有关系:s=60t.其中里程s与时间t是变化的量,速度60千米/小时是不变的量.
这种问题反映了匀速行驶的汽车所行驶的里程随行驶时间的变化过程.其实现实生活中有好多类似的问题,都是反映不同事物的变化过程,其中有些量的值是按照某种规律变化,其中有些量的是按照某种规律变化的',如上例中的时间t、里程s,有些量的数值是始终不变的,如上例中的速度60千米/小时.
[活动一]
1.每张电影票售价为10元,如果早场售出票150张,日场售出205张,晚场售出310张.三场电影的票房收入各多少元.设一场电影售票x张,票房收入y元.怎样用含x的式子表示y?
2.在一根弹簧的下端悬挂重物,改变并记录重物的质量,观察并记录弹簧长度的变化,探索它们的变化规律.如果弹簧原长10cm,每1kg重物使弹簧伸长0.5cm,怎样用含有重物质量m的式子表示受力后的弹簧长度?
引导学生通过合理、正确的思维方法探索出变化规律.
结论:
1.早场电影票房收入:150×10=1500(元)
日场电影票房收入:205×10=20xx(元)
晚场电影票房收入:310×10=3100(元)
关系式:y=10x
2.挂1kg重物时弹簧长度: 1×0.5+10=10.5(cm)
挂2kg重物时弹簧长度:2×0.5+10=11(cm)
挂3kg重物时弹簧长度:3×0.5+10=11.5(cm)
关系式:l=0.5m+10
通过上述活动,我们清楚地认识到,要想寻求事物变化过程的规律,首先需确定在这个过程中哪些量是变化的,而哪些量又是不变的.在一个变化过程中,我们称数值发生变化的量为变量(variable),那么数值始终不变的量称之为常量(constant).如上述两个过程中,售出票数x、票房收入y;重物质量m,弹簧长度l都是变量.而票价10元,弹簧原长10cm……都是常量.
[活动二]
1.要画一个面积为10cm2的圆,圆的半径应取多少?圆的面积为20cm2呢?怎样用含有圆面积S的式子表示圆半径r?
2.用10m长的绳子围成矩形,试改变矩形长度.观察矩形的面积怎样变化.记录不同的矩形的长度值,计算相应的矩形面积的值,探索它们的变化规律:设矩形的长度为xcm,面积为Scm2.怎样用含有x的式子表示S?
结论:
1.要求已知面积的圆的半径,可利用圆的面积公式经过变形求出s= r2r=
面积为10cm2的圆半径r= ≈1.78(cm)
面积为20cm2的圆半径r= ≈2.52(cm)
关系式:r=
2.因矩形两组对边相等,所以它一条长与一条宽的和应是周长10cm的一半,即5cm.
若长为1cm,则宽为5-1=4(cm)
据矩形面积公式:S=1×4=4(cm2)
若长为2cm,则宽为5-2=3(cm)
面积S=2×(5-2)=6(cm2)
… …
若长为xcm,则宽为5-x(cm)
面积s=x?(5-x)=5x-x2(cm2)
从以上两个题中可以看出,在探索变量间变化规律时,可利用以前学过的一些有关知识公式进行分析寻找,以便尽快找出之间关系,确定关系式.
Ⅲ.随堂练习
1.购买一些铅笔,单价0.2元/支,总价y元随铅笔支数x变化,指出其中的常量与变量,并写出关系式.
2.一个三角形的底边长5cm,高h可以任意伸缩.写出面积S随h变化关系式,并指出其中常量与变量.
解:1.买1支铅笔价值1×0.2=0.2(元)
买2支铅笔价值2×0.2=0.4(元)
……
买x支铅笔价值x×0.2=0.2x(元)
所以y=0.2x
其中单价0.2元/支是常量,总价y元与支数x是变量.
2.根据三角形面积公式可知:
当高h为1cm时,面积S= ×5×1=2.5cm2
当高h为2cm时,面积S= ×5×2=5cm2
… …
当高为hcm,面积S= ×5×h=2.5hcm2
八年级数学下教案篇3
一、创设情境
1.一次函数的图象是什么,如何简便地画出一次函数的图象?
(一次函数y=kx+b(k≠0)的图象是一条直线,画一次函数图象时,取两点即可画出函数的图象).
2.正比例函数y=kx(k≠0)的图象是经过哪一点的直线?
(正比例函数y=kx(k≠0)的图象是经过原点(0,0)的一条直线).
3.平面直角坐标系中,x轴、y轴上的点的坐标有什么特征?
4.在平面直角坐标系中,画出函数的图象.我们画一次函数时,所选取的两个点有什么特征,通过观察图象,你发现这两个点在坐标系的什么地方?
二、探究归纳
1.在画函数的图象时,通过列表,可知我们选取的点是(0,-1)和(2,0),这两点都在坐标轴上,其中点(0,-1)在y轴上,点(2,0)在x轴上,我们把这两个点依次叫做直线与y轴与x轴的交点.
2.求直线y=-2x-3与x轴和y轴的交点,并画出这条直线.
分析x轴上点的纵坐标是0,y轴上点的横坐标0.由此可求x轴上点的横坐标值和y轴上点的纵坐标值.
解因为x轴上点的纵坐标是0,y轴上点的横坐标0,所以当y=0时,x=-1.5,点(-1.5,0)就是直线与x轴的交点;当x=0时,y=-3,点(0,-3)就是直线与y轴的交点.
过点(-1.5,0)和(0,-3)所作的直线就是直线y=-2x-3.
所以一次函数y=kx+b,当x=0时,y=b;当y=0时,.所以直线y=kx+b与y轴的交点坐标是(0,b),与x轴的交点坐标是.
三、实践应用
例1若直线y=-kx+b与直线y=-x平行,且与y轴交点的纵坐标为-2;求直线的表达式.
分析直线y=-kx+b与直线y=-x平行,可求出k的值,与y轴交点的纵坐标为-2,可求出b的值.
解因为直线y=-kx+b与直线y=-x平行,所以k=-1,又因为直线与y轴交点的纵坐标为-2,所以b=-2,因此所求的直线的表达式为y=-x-2.
例2求函数与x轴、y轴的交点坐标,并求这条直线与两坐标轴围成的三角形的面积.
分析求直线与x轴、y轴的交点坐标,根据x轴、y轴上点的纵坐标和横坐标分别为0,可求出相应的横坐标和纵坐标?
八年级数学下教案篇4
教学目标
理解平行四边形的定义,能根据定义探究平行四边形的性质.
教学思考
1.通过观察、实验、猜想、验证、推理、交流等数学活动,发展学生合情推理能力和动手操作能力及应用数学的意识与能力.
2.能够根据平行四边形的性质进行简单的推理和计算.
解决问题
通过平行四边形性质的探索过程,丰富学生从事数学活动的经验与体验,能运用平行四边形的性质进行有关的推理和计算,发展应用意识.
情感态度
在应用平行四边形的性质的过程养成独立思考的习惯,在数学学习活动中获得成功的体验.
重点
平行四边形的性质的探究和平行四边形的性质的应用.
难点
平行四边形的性质的应用.
教学流程安排
活动流程图
活动内容和目的
活动1欣赏图片,了解生活中的特殊四边形
活动2剪三角形纸片,拼凸四边形
活动3理解平行四边形的概念
活动4探究平行四边形边、角的`性质
活动5平行四边形性质的应用
活动6评价反思、布置作业
熟悉生活中特殊的四边形,导出课题.
通过用三角形拼四边形的过程,渗透转化思想,激发探索精神.
掌握平行四边形的定义及表示方法.
探究平行四边形的性质.
运用平行四边形的性质.
学生交流,内化知识,课后巩固知识.
教学过程设计
问题与情景
师生行为
设计意图
[活动1]
下面的图片中,有你熟悉的哪些图形?
(出示图片)
演示图片,学生欣赏.
教师介绍四边形与我们生活密切联系,学生可再补充列举.
从实例图片中,抽象出的特殊四边形,培养学生的抽象思维.通过举例,让学生感受到数学与我们的生活紧密联系.
问题与情景
师生行为
设计意图
[活动2]
拼一拼
将一张纸对折,剪下两张叠放的三角形纸片.将这两个三角形相等的一组边重合,你会得到怎样的图形.
(1)你拼出了怎样的凸四边形?与同伴交流.
(2)一位同学拼出了如下图所示的一个四边形,这个四边形的对边有怎样的位置关系?说说你的理由.
学生经过实验操作,开展独立思考与合作学习.
教师深入学生之中,观察学生频出的方法与过程,接受学生质疑并指导个别学生探究.
教师待学生充分探究后,请学生展示拼图的方法和不同的图形.并引导学生分析(2)中的四边形的边的位置特征,从而引出本节课研究的内容
八年级数学下教案篇5
教学目标
1、知识与技能
能确定多项式各项的公因式,会用提公因式法把多项式分解因式、
2、过程与方法
使学生经历探索多项式各项公因式的过程,依据数学化归思想方法进行因式分解、
3、情感、态度与价值观
培养学生分析、类比以及化归的思想,增进学生的合作交流意识,主动积极地积累确定公因式的初步经验,体会其应用价值、
重、难点与关键
1、重点:掌握用提公因式法把多项式分解因式、
2、难点:正确地确定多项式的公因式、
3、关键:提公因式法关键是如何找公因式、方法是:一看系数、二看字母、公因式的系数取各项系数的公约数;字母取各项相同的字母,并且各字母的指数取最低次幂、
教学方法
采用“启发式”教学方法、
教学过程
一、回顾交流,导入新知
?复习交流】
下列从左到右的变形是否是因式分解,为什么?
(1)2x2+4=2(x2+2);(2)2t2-3t+1=(2t3-3t2+t);
(3)x2+4xy-y2=x(x+4y)-y2;(4)m(x+y)=mx+my;
(5)x2-2xy+y2=(x-y)2、
问题:
1、多项式mn+mb中各项含有相同因式吗?
2、多项式4x2-x和xy2-yz-y呢?
请将上述多项式分别写成两个因式的乘积的形式,并说明理由、
?教师归纳】我们把多项式中各项都有的公共的因式叫做这个多项式的公因式,如在mn+mb中的公因式是m,在4x2-x中的公因式是x,在xy2-yz-y中的公因式是y、
概念:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积形式,这种分解因式的方法叫做提公因式法、
二、小组合作,探究方法
?教师提问】多项式4x2-8x6,16a3b2-4a3b2-8ab4各项的公因式是什么?
?师生共识】提公因式的方法是先确定各项的公因式再将多项式除以这个公因式得到另一个因式,找公因式一看系数、二看字母,公因式的系数取各项系数的公约数;字母取各项相同的字母,并且各字母的指数取最低次幂、
三、范例学习,应用所学
?例1】把-4x2yz-12xy2z+4xyz分解因式、
解:-4x2yz-12xy2z+4xyz
=-(4x2yz+12xy2z-4xyz)
=-4xyz(x+3y-1)
?例2】分解因式,3a2(x-y)3-4b2(y-x)2
?思路点拨】观察所给多项式可以找出公因式(y-x)2或(x-y)2,于是有两种变形,(x-y)3=-(y-x)3和(x-y)2=(y-x)2,从而得到下面两种分解方法、
解法1:3a2(x-y)3-4b2(y-x)2
=-3a2(y-x)3-4b2(y-x)2
=-[(y-x)2?3a2(y-x)+4b2(y-x)2]
=-(y-x)2[3a2(y-x)+4b2]
=-(y-x)2(3a2y-3a2x+4b2)
解法2:3a2(x-y)3-4b2(y-x)2
=(x-y)2?3a2(x-y)-4b2(x-y)2
=(x-y)2[3a2(x-y)-4b2]
=(x-y)2(3a2x-3a2y-4b2)
?例3】用简便的方法计算:0、84×12+12×0、6-0、44×12、
?教师活动】引导学生观察并分析怎样计算更为简便、
解:0、84×12+12×0、6-0、44×12
=12×(0、84+0、6-0、44)
=12×1=12、
?教师活动】在学生完全例3之后,指出例3是因式分解在计算中的应用,提出比较例1,例2,例3的公因式有什么不同?
四、随堂练习,巩固深化
课本p167练习第1、2、3题、
?探研时空】
利用提公因式法计算:
0、582×8、69+1、236×8、69+2、478×8、69+5、704×8、69
五、课堂总结,发展潜能
1、利用提公因式法因式分解,关键是找准公因式、在找公因式时应注意:(1)系数要找公约数;(2)字母要找各项都有的;(3)指数要找最低次幂、
2、因式分解应注意分解彻底,也就是说,分解到不能再分解为止、
六、布置作业,专题突破
课本p170习题15、4第1、4(1)、6题、
板书设计
八年级数学下教案篇6
一、教学目标:
1、知识目标:能熟练掌握简单图形的移动规律,能按要求作出简单平面图形平移后的图形,能够探索图形之间的平移关系;
2、能力目标:①,在实践操作过程中,逐步探索图形之间的平移关系;
②,对组合图形要找到一个或者几个“基本图案”,并能通过对“基本图案”的平移,复制所求的图形;
3、情感目标:经历对图形进行观察、分析、欣赏和动手操作、画图等过程,发展初步的审美能力,增强对图形欣赏的意识。
二、重点与难点:
重点:图形连续变化的特点;
难点:图形的划分。
三、教学方法:
讲练结合。使用多媒体课件辅助教学。
八年级数学上册教案四、教具准备:
多媒体、磁性板,若干小正六边形,“工”字的砖,组合图形。
五、教学设计:
教师活动
学生活动
设计意图
创设情景,探究新知:
(演示课件):教材上小狗的图案。提问:(1)这个图案有什么特点?(2)它可以通过什么“基本图案”,经过怎样的平移而形成?(3)在平移过程中,“基本图案”的大小、形状、位置是否发生了变化?
小组讨论,派代表回答。(答案可以多种)
让学生充分讨论,归纳总结,老师给予适当的指导,并对每种答案都要肯定。
看磁性黑板,展示教材64页图3-9,提问:左图是一个正六边形,它经过怎样的平移能得到右图?谁到黑板做做看?
展示教材64页3-10,提问:左图是一种“工”字形砖,右图是怎样通过左图得到的?
小组讨论,派代表到台上给大家讲解。
气氛要热烈,充分调动学生的积极性,发掘他们的想象力。
(演示课件)教材65页图3-11,提问:这个图可以看做是什么“基本图案”通过平移得到的?
畅所欲言,互相补充。
课堂小结:
在教师的引导下学生总结本节课的主要内容,并启发学生在我们周围寻找平移的例子。
课堂练习:
(演示课件)教材65页“随堂练习”。
小组讨论。
小组讨论完成。
例子一定要和大家接触紧密、典型。
答案不惟一,对于每种答案,教师都要给予充分的肯定。
六、教学反思:
本节的内容并不是很复杂,借助多媒体进行直观、形象,内容贴近生活,学生兴致较高,课堂气氛活跃,参与意识较强,学生一般都能在教师的指导下掌握。教学过程中渗透数学美学思想,促进学生综合素质的提高。
会计实习心得体会最新模板相关文章: