好文档范文 >工作方案

八年级数学下教案7篇

教师可以与同事合作,分享教案,以获得更多的反馈和改进意见,在编写教案时,教师应该根据学生的兴趣点来设计吸引人的教育内容,下面是好文档范文小编为您分享的八年级数学下教案7篇,感谢您的参阅。

八年级数学下教案7篇

八年级数学下教案篇1

教学目标:

1、经历数据离散程度的探索过程

2、了解刻画数据离散程度的三个量度极差、标准差和方差,能借助计算器求出相应的数值。

教学重点:

会计算某些数据的极差、标准差和方差。

教学难点:

理解数据离散程度与三个差之间的关系。

教学准备:

计算器,投影片等

教学过程:

一、创设情境

1、投影课本p138引例。

(通过对问题串的解决,使学生直观地估计从甲、乙两厂抽取的20只鸡腿的平均质量,同时让学生初步体会平均水平相近时,两者的离散程度未必相同,从而顺理成章地引入刻画数据离散程度的一个量度极差)

2、极差:是指一组数据中最大数据与最小数据的差,极差是用来刻画数据离散程度的一个统计量。

二、活动与探究

如果丙厂也参加了竞争,从该厂抽样调查了20只鸡腿,数据如图(投影课本159页图)

问题:1、丙厂这20只鸡腿质量的平均数和极差是多少?

2、如何刻画丙厂这20只鸡腿质量与其平均数的'差距?分别求出甲、丙两厂的20只鸡腿质量与对应平均数的差距。

3、在甲、丙两厂中,你认为哪个厂鸡腿质量更符合要求?为什么?

(在上面的情境中,学生很容易比较甲、乙两厂被抽取鸡腿质量的极差,即可得出结论。这里增加一个丙厂,其平均质量和极差与甲厂相同,此时导致学生思想认识上的矛盾,为引出另两个刻画数据离散程度的量度标准差和方差作铺垫。

三、讲解概念:

方差:各个数据与平均数之差的平方的平均数,记作s2

设有一组数据:x1, x2, x3,,xn,其平均数为

则s2= ,而s= 称为该数据的标准差(既方差的算术平方根)

从上面计算公式可以看出:一组数据的极差,方差或标准差越小,这组数据就越稳定。

四、做一做

你能用计算器计算上述甲、丙两厂分别抽取的20只鸡腿质量的方差和标准差吗?你认为选哪个厂的鸡腿规格更好一些?说说你是怎样算的?

(通过对此问题的解决,使学生回顾了用计算器求平均数的步骤,并自由探索求方差的详细步骤)

五、巩固练习:课本第172页随堂练习

六、课堂小结:

1、怎样刻画一组数据的离散程度?

2、怎样求方差和标准差?

七、布置作业:习题5.5第1、2题。

八年级数学下教案篇2

菱形

学习目标(学习重点):

1.经历探索菱形的识别方法的过程,在活动中培养探究意识与合作交流的习惯;

2.运用菱形的识别方法进行有关推理.

补充例题:

例1. 如图,在△abc中,ad是△abc的角平分线。de∥ac交ab于e,df∥ab交ac于f.四边形aedf是菱形吗?说明你的理由.

例2.如图,平行四边形abcd的对 角线ac的垂直平分线与边ad、bc分别交于e、f.

四边形afce是菱形吗?说明理由.

例3.如图 , abcd是矩形纸片,翻折b、d,使bc、ad恰好落在ac上,设f、h分别是b、d落在ac上的两点,e、g分别是折痕ce、ag与ab、cd的交点

(1)试说明四边形aecg是平行四边形;

(2)若ab=4cm,bc=3cm,求线段ef的长;

(3)当矩形两边ab、bc具备怎样的关系时,四边形aecg是菱形.

课后续助:

一、填空题

1.如果四边形abcd是平行四边形,加上条件___________________,就可以是矩形;加上条件_______________________,就可以是菱形

2.如图,d、e、f分别是△abc的边bc、ca、ab上的点,

且de∥ba,df∥ ca

(1)要使四边形afde是菱形,则要增加条件______________________

(2)要使四边形afde是矩形,则要增加条件______________________

二、解答题

1.如图,在□abcd中 ,若2,判断□abcd是矩形还是菱形?并说明理由。

2.如图 ,平行四边形a bcd的两条对角线ac,bd相交于点o,oa=4,ob=3,ab=5.

(1) ac,bd互相垂直吗?为什么?

(2) 四边形abcd是菱形 吗?

3.如图,在□abcd中,已知adab,abc的平分线交ad于e,ef∥ab交bc于f,试问: 四 边形abfe是菱形吗?请说明理由。

4.如图,把一张矩形的纸abcd沿对角线bd折叠,使点c落在点e处,be与ad交于点f.

⑴求证:abf≌

⑵若将折叠的图形恢复原状,点f与bc边上的点m正好重合,连接dm,试判断四边形bmdf的形状,并说明理由.

八年级数学下教案篇3

《正方形》教学设计

教学内容分析:

⑴学习特殊的平行四边形—正方形,它的特殊的性质和判定。

⑵前面学习了平行四边形、矩形菱形,类比他们的性质与判断,有利于对正方形的研究。

⑶对本节的学习,继续培养学生分类研究的思想,并且建立新旧知识的联系,类比的基础上进行归纳,梳理知识,进一步发展学生的推理能力。

学生分析

⑴学生在小学初步认识了正方形,并且本节课之前,学生又学习了几种平行四边形,已经具备了观察研究平行四边形的经验与知识基础。

⑵学生在上几节已有了推理的经历,但是对于证明,学生的思维能力还不成熟,有待于提高。

教学目标:

⑴知识与技能:了解正方形是特殊的平行四边形,掌握它的性质和判定,会利用性质与判定进行简单的说理。

⑵过程与方法:通过类比前边的四边形的研究,探索并归纳正方形的性质与判定。通过运用提高学生的推理能力。

⑶情感态度与价值观:在学习中体会正方形的完美性,通过活动获得成功的喜悦与自信。

重点:掌握正方形的性质与判定,并进行简单的推理。

难点:探索正方形的判定,发展学生的推理能

教学方法:类比与探究

教具准备:可以活动的四边形模型。

一、教学分析

(一)教学内容分析

1.教材:义务教育课程标准实验教科书《数学》九年级上册(人民教育出版社)

2.本课教学内容的地位、作用,知识的前后联系

?中心对称图形》是新人教版九年级数学上册第二十三章第二单元第二节课的内容。本节教材属于图形变换的内容,是在学习了“轴对称和轴对称图形”、“旋转和中心对称”后的一种对称图形,因此涉及归纳、类比等思想方法,对激发学生探索精神和创新意识等方面都有重要意义。

3.本课教学内容的特点,重点分析体现新课程理念的特点

本节课主要介绍中心对称图形的概念、中心对称图形的识别、中心对称图形与轴对称图形与中心对称的比较、中心对称图形的性质。为使学生感受、理解知识的产生和发展过程,培养学生的抽象思维,我将通过:(1)例举日常生活中的一些旋转对称图形引出中心对称图形的概念;(2)引导学生观察、猜想、实验、归纳、类比等方法探究中心对称图形的性质,(3)通过多媒体演示使学生对中心对称图形的性质有直观的表象。我认为这环环相扣、层层深入、循序渐进的活动过程,符合新课程标准理念和学生建构知识的规律,有利于激发学生的学习情趣。

(二)教学对象分析

1.学生所在地区、学校及班级的特色

我授课的班级是西安市阎良区振兴中学九年级一班,作为九年级的学生,在图形的对称方面已经积累一些经验,已经具有一定的观察、猜想、实验、归纳、类比等研究图形对称变换的能力;班级学生具有个性活泼,思维活跃,对各种事物充满好奇,学习情绪易于调动,学习积极性高的特点,但学生的抽象思维能力个体差异较大,并且班级中已出现分化现象。

2.学生的年龄特点和认知特点

班级学生的年龄大多在15岁到17岁间。他们已具备了一定的独立分析、解决问题的能力,表现欲望较为强烈,喜好发表个人见解并且具有一定的合作交流、共同探讨的意识与经验,因此在课程内容的安排中,适当地创设一些具有一定思维深度的问题,加强学生在学习过程中自主探索与合作交流的紧密结合,促使学生在探究的过程中,更多地获得成功的体验,感受学习思考的乐趣。

教学过程

一:复习巩固,建立联系

?教师活动

问题设置:①平行四边形、矩形,菱形各有哪些性质?

②()的四边形是平行四边形。()的平行四边形是矩形。()的平行四边形是菱形。()的四边形是矩形。()的四边形是菱形。

?学生活动

学生回忆,并举手回答,对于填空题,让更多的学生参与,说出更多的答案。

?教师活动

评析学生的结果,给予表扬。

总结性质从边角对角线考虑,在填空时也考虑这几方面之外,还应该考虑三者之间的联系与区别。

演示平行四边形变为矩形菱形的过程。

二:动手操作,探索发现

活动一:拿出一张矩形纸片,拉起一角,使其宽ab落在长ad边上,如下图所示,沿着b′e剪下,能得到什么图形?

?学生活动

学生拿出自备矩形纸片,动手操作,不难发现它是正方形。

设置问题:①什么是正方形?

观察发现,从活动中体会。

【教师活动】:演示矩形变为正方形的过程,菱形变为正方形的过程。

【学生活动】认真观察变化过程,思考之间的联系,举手回答设置问题。

设置问题②正方形是矩形吗,是菱形吗?是平行四边形吗?为什么?

【学生活动】

小组讨论,分组回答。

【教师活动】

总结板书:㈠(一组邻边相等)的矩形是正方形,(一个角是直角)的菱形是正方形。

设置问题③正方形有那些性质?

【学生活动】

小组讨论,举手抢答。

?教师活动

表扬学生发言,板书学生发现,㈡正方形每一条对角线平分一组对角

活动二:拿出活动一得到的正方形折一折,正方形是轴对称图形吗?有几条对称轴?

学生活动

折纸发现,说出自己的发现。得到正方形的又一性质。正方形是轴对称图形。

教师活动

演示从平行四边形变为正方形的过程,擦去板书㈠中的括号内容,出示一下问题:你还可以怎样填空?

()的菱形是正方形,()的矩形是正方形,()的平行四边形是正方形,()的四边形是正方形。

学生活动

小组充分交流,表达不同的意见。

教师活动

评析活动,总结发现:

一组邻边相等的矩形是正方形,对角线互相平分的矩形是正方形;

有一个角是直角的菱形是正方形,对角线相等的菱形是正方形,;

有一组邻边相等且有一个角是直角的平行四边形是正方形,对角线相等且互相平分的平行四边形是正方形;

四边相等且有一角是直角的四边形是正方形,对角线相等且互相垂直平分的四边形是正方形。

以上是正方形的判定方法。

正方形是一个多么完美的平行四边形呀?大家互相说一说,它的完美体现在哪里?生活中有哪些利用正方形的例子?

学生交流,感受正方形

三,应用体验,推理证明。

出示例一:正方形abcd的两条对角线ac,bd交与o,ab长4cm,求ac,ao长,及的度数。

方法一解:∵四边形abcd是正方形

∴∠abc=90°(正方形的四个角是直角)

bc=ab=4cm(正方形的四条边相等)

∴=45°(等腰直角三角形的底角是45°)

∴利用勾股定理可知,ac===4cm

∵ao=ac(正方形的对角线互相平分)

∴ao=×4=2cm

方法二:证明△aob是等腰直角三角形,即可得证。

学生活动

独立思考,写出推理过程,再进行小组讨论,并且各小组指派代表写在黑板上,共同交流。

教师活动

总结解题方法,从正方形的性质全面考虑,准确利用条件,减少麻烦。评析解题步骤,表扬突出学生。

出示例二:在正方形abcd中,e、f、g、h分别在它的四条边上,且ae=bf=cg=dh,四边形efgh是什么特殊的四边形,你是如何判断的?

学生活动

小组交流,分析题意,整理思路,指名口答。

教师活动

说明思路,从已知出发或者从已有的判定加以选择。

四,归纳新知,梳理知识。

这一节课你有什么收获?

学生举手谈论自己的收获。

请把平行四边形,矩形,菱形,正方形分别填写在下图的abcdc处,说明它们的关系。

发表评论

教学目标:

情意目标:培养学生团结协作的精神,体验探究成功的乐趣。

能力目标:能利用等腰梯形的性质解简单的几何计算、证明题;培养学生探究问题、自主学习的能力。

认知目标:了解梯形的概念及其分类;掌握等腰梯形的性质。

教学重点、难点

重点:等腰梯形性质的探索;

难点:梯形中辅助线的添加。

教学课件:powerpoint演示文稿

教学方法:启发法、

学习方法:讨论法、合作法、练习法

教学过程:

(一)导入

1、出示图片,说出每辆汽车车窗形状(投影)

2、板书课题:5梯形

3、练习:下列图形中哪些图形是梯形?(投影)

结梯形概念:只有4、总结梯形概念:一组对边平行另以组对边不平行的四边形是梯形。

5、指出图形中各部位的名称:上底、下底、腰、高、对角线。(投影)

6、特殊梯形的分类:(投影)

(二)等腰梯形性质的探究

?探究性质一】

思考:在等腰梯形中,如果将一腰ab沿ad的方向平移到de的位置,那么所得的△dec是怎样的三角形?(投影)

猜想:由此你能得到等腰梯形的内角有什么样的性质?(学生操作、讨论、作答)

如图,等腰梯形abcd中,ad∥bc,ab=cd。求证:∠b=∠c

想一想:等腰梯形abcd中,∠a与∠d是否相等?为什么?

等腰梯形性质:等腰梯形的同一条底边上的两个内角相等。

?操练】

(1)如图,等腰梯形abcd中,ad∥bc,ab=cd,∠b=60o,bc=10cm,ad=4cm,则腰ab=cm。(投影)

(2)如图,在等腰梯形abcd中,ad∥bc,ab=cd,de∥ac,交bc的延长线于点e,ca平分∠bcd,求证:∠b=2∠e.(投影)

?探究性质二】

如果连接等腰梯形的两条对角线,图中有哪几对全等三角形?哪些线段相等?(学生操作、讨论、作答)

如上图,等腰梯形abcd中,ad∥bc,ab=cd,ac、bd相交于o,求证:ac=bd。(投影)

等腰梯形性质:等腰梯形的两条对角线相等。

?探究性质三】

问题一:延长等腰梯形的两腰,哪些三角形是轴对称图形?为什么?对称轴呢?(学生操作、作答)

问题二:等腰梯是否轴对称图形?为什么?对称轴是什么?(重点讨论)

等腰梯形性质:同以底上的两个内角相等,对角线相等

(三)质疑反思、小结

让学生回顾本课教学内容,并提出尚存问题;

学生小结,教师视具体情况给予提示:性质(从边、角、对角线、对称性等角度总结)、解题方法(化梯形问题为三角形及平行四边形问题)、梯形中辅助线的添加方法。

八年级数学下教案篇4

教学建议

1、平行线等分线段定理

定理:如果一组平行线在一条直线上截得的线段相等,那么在其他需直线上截得的线段也相等。

注意事项:定理中的平行线组是指每相邻的两条距离都相等的特殊的平行线组;它是由三条或三条以上的平行线组成。

定理的作用:可以用来证明同一直线上的线段相等;可以等分线段。

2、平行线等分线段定理的推论

推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰。

推论2:经过三角形一边的中点与另一边平行的直线,必平分第三边。

记忆方法:“中点”+“平行”得“中点”。

推论的用途:(1)平分已知线段;(2)证明线段的倍分。

重难点分析

本节的重点是平行线等分线段定理。因为它不仅是推证三角形、梯形中位线定理的基础,而且是第五章中“平行线分线段成比例定理”的基础。

本节的难点也是平行线等分线段定理。由于学生初次接触到平行线等分线段定理,在认识和理解上有一定的难度,在加上平行线等分线段定理的两个推论以及各种变式,学生难免会有应接不暇的感觉,往往会有感觉新鲜有趣但掌握不深的情况发生,教师在教学中要加以注意。

教法建议

平行线等分线段定理的引入

生活中有许多平行线等分线段定理的例子,并不陌生,平行线等分线段定理的引入可从下面几个角度考虑:

①从生活实例引入,如刻度尺、作业本、栅栏、等等;

②可用问题式引入,开始时设计一系列与平行线等分线段定理概念相关的问题由学生进行思考、研究,然后给出平行线等分线段定理和推论。

教学设计示例

一、教学目标

1、使学生掌握平行线等分线段定理及推论。

2、能够利用平行线等分线段定理任意等分一条已知线段,进一步培养学生的作图能力。

3、通过定理的变式图形,进一步提高学生分析问题和解决问题的能力。

4、通过本节学习,体会图形语言和符号语言的和谐美

二、教法设计

学生观察发现、讨论研究,教师引导分析

三、重点、难点

1、教学重点:平行线等分线段定理

2、教学难点:平行线等分线段定理

四、课时安排

l课时

五、教具学具

计算机、投影仪、胶片、常用画图工具

六、师生互动活动设计

教师复习引入,学生画图探索;师生共同归纳结论;教师示范作图,学生板演练习

七、教学步骤

【复习提问】

1、什么叫平行线?平行线有什么性质。

2、什么叫平行四边形?平行四边形有什么性质?

【引入新课】

由学生动手做一实验:每个同学拿一张横格纸,首先观察横线之间有什么关系?(横线是互相平等的,并且它们之间的距离是相等的),然后在横格纸上画一条垂直于横线的直线 ,看看这条直线被相邻横线截成的各线段有什么关系?(相等,为什么?)这时在横格纸上再任画一条与横线相交的直线 ,测量它被相邻横线截得的线段是否也相等?

(引导学生把做实验的条件和得到的结论写成一个命题,教师总结,由此得到平行线等分线段定理)

平行线等分线段定理:如果一组平行线在一条直线上挂得的线段相等,那么在其他直线上截得的线段也相等。

注意:定理中的“一组平行线”指的是一组具有特殊条件的平行线,即每相邻两条平行线间的距离都相等的特殊平行线组,这一点必须使学生明确。

下面我们以三条平行线为例来证明这个定理(由学生口述已知,求证)。

已知:如图,直线 , 。

求证: 。

分析1:如图把已知相等的线段平移,与要求证的两条线段组成三角形(也可应用平行线间的平行线段相等得 ),通过全等三角形性质,即可得到要证的结论。

(引导学生找出另一种证法)

分析2:要证的两条线段分别是梯形的腰,我们借助于前面常用的辅助线,把梯形转化为平行四边形和三角形,然后再利用这些熟悉的知识即可证得 。

证明:过 点作 分别交 、 于点 、 ,得 和 ,如图。

∵ ,

又∵ , ,

为使学生对定理加深理解和掌握,把知识学活,可让学生认识几种定理的变式图形,如图(用计算机动态演示)。

引导学生观察下图,在梯形 中, , ,则可得到 ,由此得出推论 1。

推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰。

再引导学生观察下图,在 中, , ,则可得到 ,由此得出推论2。

推论2:经过三角形一边的中点与另一边平行的直线必平分第三边。

注意:推论1和推论2也都是很重要的定理,在今后的论证和计算中经常用到,因此,要求学生必须掌握好。

接下来讲如何利用平行线等分线段定理来任意等分一条线段。

例 已知:如图,线段 。

求作:线段 的五等分点。

作法:①作射线 。

②在射线 上以任意长顺次截取 。

③连结 。

④过点 。 、 、 分别作 的平行线 、 、 、 ,分别交 于点 、 、 、 。

? 、 、 就是所求的五等分点。

(说明略,由学生口述即可)

【总结、扩展】

小结:

(l)平行线等分线段定理及推论。

(2)定理的证明只取三条平行线,是在较简单的情况下证明的,对于多于三条的平行线的情况,也可用同样方法证明。

(3)定理中的“平行线组”,是指每相邻两条平行线间的距离都相等的特殊平行线组。

(4)应用定理任意等分一条线段。

八、布置作业

教材p188中a组2、9

九、板书设计

十、随堂练习

教材p182中1、2

八年级数学下教案篇5

教学目标:

1、经历对图形进行观察、分析、欣赏和动手操作、画图过程,掌握有关画图的操作技能,发展初步审美能力,增强对图形欣赏的意识。

2、能按要求把所给出的图形补成以某直线为轴的轴对称图形,能依据图形的轴对称关系设计轴对称图形。

教学重点:本节课重点是掌握已知对称轴l和一个点,要画出点a关于l的轴对称点的画法,在此基础上掌握有关轴对称图形画图的操作技能,并能利用图形之间的轴对称关系来设计轴对称图形,掌握有关画图的技能及设计轴对称图形是本节课的难点。

教学方法:动手实践、讨论。

教学工具:课件

教学过程:

一、 先复习轴对称图形的定义,以及轴对称的相关的性质:

1.如果一个图形沿一条直线折叠后,直线两旁的部分能够互相________,那么这个图形叫做________________,这条直线叫做_____________

2.轴对称的三个重要性质______________________________________________

_____________________________________________________________________

二、提出问题:

二、探索练习:

1. 提出问题:

如图:给出了一个图案的一半,其中的虚线是这个图案的对称轴。

你能画出这个图案的另一半吗?

吸引学生让学生有一种解决难点的想法。

2.分析问题:

分析图案:这个图案是由重要六个点构成的,要将这个图案的另一半画出来,根据轴对称的性质只要画出这个图案中六个点的对应点即可

问题转化成:已知对称轴和一个点a,要画出点a关于l的对应点 ,可采用如下方法:`

在学生掌握已知一个点画对应点的基础上,解决上述给出的问题,使学生有一条较明确的思路。

三、对所学内容进行巩固练习:

1. 如图,直线l是一个轴对称图形的对称轴,画出这个轴对称图形的另一半。

2. 试画出与线段ab关于直线l的线段

3.如图,已知 直线mn,画出以mn为对称轴 的轴对称图形

小 结: 本节课学习了已知对称轴l和一个点如何画出它的对应点,以及如何补全图形,并利用轴对称的性质知道如何设计轴对称图形。

教学后记:学生对这节课的内容掌握比较好,但对于利用轴对称的性质来设计图形觉得难度比较大。因本节课内容较有趣,许多学生上课积极性较高

八年级数学下教案篇6

教学目标:

1。经历探索平行四边形有关概念和性质的过程,在活动中发展学生的探究意识和合作交流的习惯;

2。索并掌握平行四边形的性质,并能简单应用;

3。在探索活动过程中发展学生的探究意识。

教学重点:平行四边形性质的探索。

教学难点:平行四边形性质的理解。

教学准备:多媒体课件

教学过程

第一环节:实践探索,直观感知(5分钟,动手实践、探索、感知,学生进一步探索了平行四边形的概念,明确了平行四边形的本质特征。)

1。小组活动一

内容:

问题1:同学们拿出准备好的剪刀、彩纸或白纸一张。将一张纸对折,剪下两张叠放的三角形纸片,将它们相等的一边重合,得到一个四边形。

(1)你拼出了怎样的四边形?与同桌交流一下;

(2)给出小明拼出的四边形,它们的对边有怎样的位置关系?说说你的理由,请用简捷的语言刻画这个图形的特征。

2。小组活动二

内容:生活中常见到平行四边形的实例有什么呢?你能举例说明吗?

第二环节 探索归纳、合作交流(5分钟,学生动手、动嘴,全班交流)

小组活动3:

用 一张半透明的纸复制你刚才画的平行四边形,并将复制 后的四边形绕一个顶点旋转180,你能平移该纸片,使它与你画的平行四边形重合吗?由此你能得到哪些结论?四边形的对边、对角分别有什么关系?能用别的方法验证你的结论吗?

(1)让学生动手操作、复制、旋转 、观察、分析;

(2)学生交流、议论;

(3)教师利用多媒体展示实践的过程。

第三环节 推理论证、感悟升华(10分钟,学生通过说理,由直观感受上升到理性分析,在操作层面感知的基础上提升,并了解图形具有的数学本质。)

实践 探索内容

(1)通过剪纸,拼纸片,及旋转,可以观察到平行四边行的对角线把它分成的两个三角形全等。

(2)可以通过推理来证明这个结论,如图连结ac。

∵ 四边形abcd是平行四边形

ad // bc, ab // cd

2,4

△ab c和△cda中

1

ac=c a

4

△abc≌△cda(asa)

ab=dc, ad=cb,b

又∵2

4

3=4

即bad=dcb

第四环节 应用巩固 深化提高(10分钟,通过议一议,练一练,学生进一步理解平行四边形的性质,并进行简单合情推理,体现性质的应用,同时从不同角度平移、旋转等再一次认识平行四边形的本质特征。)

1。活动内容:

(1)议一议:如果已知平行四边形的一个内角度数,能确定其它三个内角的度数吗?

a(学生思考、议论)

b总结归纳:可以确定其它三个内角的度数。

由平行四边形对 边分边平行 得到邻角互补;又由于平行四边形对角相等,由此已知平行四边形的一个内角的度数,可以确定其它三个角度数。

(2)练一练(p99随堂练习)

练1 如图:四边形abcd是平行四边形。

(1)求adc、bcd度数

(2)边ab、bc的度数、长度。

练2 四边形abcd是平行四边形

(1)它的四条边中哪些 线段可以通过平移相到得到?

(2)设对角线ac、bd交于o;ao与oc、bo与od有何关系?说说理由。

归 纳:平行四边形的性质:平行四边形的对角线互相平分。

第五环节 评价反思 概括总结(8分钟,学生踊跃谈感受和收获)

活动内容

师生相互交流、反思、总结。

(1)经历了对平行四边形的特征探索,你有什么感受和收获?给自己一个评价。

(2)在与同伴合作交流中练表现,优秀方面有哪些?你看到同伴哪些优点?

(3)本节学习到了什么?(知识上、方法上)

考一考:

1。 abcd中,b=60,则a= ,c= ,d= 。

2。 abcd中,a比b大20,则c= 。

3。 abcd中,ab=3,bc=5,则ad= cd= 。

4。 abcd中,周长为40cm,△abc周长为25,则对角线ac=( )cm。

布置作业

课本习题4。1

a组(学优生)1 、2

b组(中等生)1、2

c组(后三分之一生)1、2

教学反思

八年级数学下教案篇7

一、 教学目标

1.了解分式、有理式的概念.

2.理解分式有意义的条件,能熟练地求出分式有意义的条件.

二、重点、难点

1.重点:理解分式有意义的条件.

2.难点:能熟练地求出分式有意义的条件.

三、课堂引入

1.让学生填写p127[思考],学生自己依次填出:,,,.

2.学生看问题:一艘轮船在静水中的最大航速为30 /h,它沿江以最大航速顺流航行90 所用时间,与以最大航速逆流航行60 所用时间相等,江水的流速为多少?

请同学们跟着教师一起设未知数,列方程.

设江水的流速为v /h.

轮船顺流航行90 所用的时间为小时,逆流航行60 所用时间小时,所以=.

3. 以上的式子,,,,有什么共同点?它们与分数有什么相同点和不同点?

四、例题讲解

p128例1. 当下列分式中的字母为何值时,分式有意义.

[分析]已知分式有意义,就可以知道分式的分母不为零,进一步解

出字母的取值范围.

[补充提问]如果题目为:当字母为何值时,分式无意义.你知道怎么解题吗?这样可以使学生一题二用,也可以让学生更全面地感受到分式及有关概念.

(补充)例2. 当为何值时,分式的值为0?

(1) (2) (3)

[分析] 分式的值为0时,必须同时满足两个条件:分母不能为零;分子为零,这样求出的的解集中的公共部分,就是这类题目的解.

[答案] (1)=0 (2)=2 (3)=1

五、随堂练习

1.判断下列各式哪些是整式,哪些是分式?

9x+4, , , , ,

2. 当x取何值时,下列分式有意义?

(1) (2) (3)

3. 当x为何值时,分式的值为0?

(1) (2) (3)

六、课后练习

1.下列代数式表示下列数量关系,并指出哪些是正是?哪些是分式?

(1)甲每小时做x个零件,则他8小时做零件 个,做80个零件需 小时.

(2)轮船在静水中每小时走a千米,水流的速度是b千米/时,轮船的顺流速度是 千米/时,轮船的逆流速度是 千米/时.

(3)x与的差于4的商是 .

2.当x取何值时,分式 无意义?

3. 当x为何值时,分式 的值为0?

会计实习心得体会最新模板相关文章:

北师大版八年级数学教案8篇

人教版小学四年级下数学教案8篇

八年级下学期年级组工作总结6篇

八年级下学期年级组工作总结优质6篇

八年级下学期年级组工作总结通用5篇

地理八年级下学期教学计划6篇

八年级体育下学期教学工作计划8篇

八年级下读后感600字5篇

8年级下数学教学工作总结7篇

小学一年级数学下学期工作计划7篇

    相关推荐

    热门推荐

    点击加载更多
    32
    c
    78048

    联系客服

    微信号:fanwen9944
    点击此处复制微信号

    客服在线时间:
    星期一至星期五 8:30~12:30 14:00~18:00

    如有疑问,扫码添加客服微信,
    问题+截图进行提问,客服会第一时间答复。