好文档范文 >工作方案

圆锥的体积教案5篇

教案的准备可以帮助教师更好地关注学生的个体差异和需求,教案是教师教学过程中的指导方针,以下是好文档范文小编精心为您推荐的圆锥的体积教案5篇,供大家参考。

圆锥的体积教案5篇

圆锥的体积教案篇1

教学目标

1、通过练习学生进一步理解、掌握圆锥的特征及体积计算公式。

2、能正确运用公式计算圆锥的体积,并解决一些简单的实际问题。

3、培养学生认真审题,仔细计算的习惯。

重点:进一步掌握圆锥的体积计算及应用

难点:圆锥体积公式的灵活运用

教学过程

一、知识回顾

1、前几节课我们认识了哪两个图形?你能说说有关它们的知识吗?

2、学生说,教师板书:

圆锥圆柱

特征1个底面2个

扇形侧面展开长方形

体积v=1/3shv=sh

二、提出本节课练习的内容和目标

三、课堂练习

(一)、基本训练

1、填空课本1----2(独立完成后校对)

2、圆锥的体积计算

已知:底面积、直径、周长与高求体积(小黑板出示)

(二)、综合训练:

1、判断

(1)圆锥的体积等于圆柱的1/3

(2)长方体、正方体、圆柱和圆锥的体积公式都可用v=sh

(3)一个圆柱形容器盛满汽油有2.5升,这个容器的容积就是2.5升

(4)圆锥的体积是否4立方厘米,底面积是6平方厘米,那么高是4厘米

2、应用:练习四第45题任选一题

3、发展题:独立思考后校对

四、课堂小结:说说本节课的收获

圆锥的体积教案篇2

教学目标:

1.组织学生参与实验,从而推导出圆锥体积的计算公式。

2.会运用圆锥的体积计算公式计算圆锥的体积。

3.培养学生观察、比较、分析、综合的能力以及初步的空间观念。

4.以小组形式参与学习过程,培养学生的合作意识。

5.渗透转化的数学思想。

教学重点:

理解和掌握圆锥体积的计算公式。

教学难点:

理解圆柱和圆锥等底等高时体积间的倍数关系。

教学资源:

等底等高的圆柱和圆锥容器一套,一些沙或米等。

教学过程:

一、联系旧知,设疑激趣,导入新课。

1.我们已经知道了哪些立体图形体积的求法?(学生回答时老师出示相应的教具---长方体,正方体圆柱体,然后板书相应的计算公式。)

2.我们是用什么方法推出圆柱体积的计算公式的?(是把圆柱体转化为长方体来推导的。板书:转化)

3.(出示教具)大家觉得这个圆锥与哪个立体图形的关系最近呢?(老师比较学生指出的圆柱与圆锥的底和高,引导学生发现这个圆柱与圆锥等底等高。)

4.大家觉得我们今天要研究的圆锥的体积可能转化为什么图形来研究比较简单呢?能说说自己的理由吗?

5.它们的体积之间到底有什么关系呢?

二、实验操作、推导圆锥体积计算公式。

1.课件出示例5。

(1)通过演示使学生知道什么叫等底等高。

(2)让学生猜想:图中的圆锥和圆柱等底等高,你能猜想一下它们体积之间有怎样的关系?

(3)实验操作,发现规律。

(用学具演示)在空圆锥里装满黄沙,然后倒入空圆柱里,看看倒几次正好装满。(用有色水演示也可)从倒的次数看,你发现圆锥体积与等底等高的圆柱体积之间有怎样的关系?得出圆锥的体积是与它等底等高的圆柱体体积的 。

老师把圆柱里的黄沙倒进圆锥,问:把圆柱内的沙往圆锥内倒三次倒光,你又发现什么规律?

(4)是不是所有的圆柱和圆锥都有这样的关系?教师可出示不等底不等高的圆锥、圆柱,让学生通过观察实验,得出只有等底等高的圆锥才是圆柱体积的 。

2.教师课件演示

3.学生讨论实验情况,汇报实验结果。

4.启发引导推导出计算公式并用字母表示。

圆锥的体积=等底等高的圆柱的体积 1/3=底面积高1/3

用字母表示:v= 1/3sh

小结:要求圆锥体积必须知道哪些条件,公式中的底面积乘以高,求的是什么?为什么要乘以1/3 ?

5.教学试一试

(1)出示题目

(2)审题后可让学生根据圆锥体积计算公式自己试做。

(3)批改讲评。注意些什么问题。

三、发散练习、巩固推展

1.做练一练第1.2题。

指名一人板演,其余学生做在练习本上。集体订正,强调要乘以1/3 。

2.做练习四第1.2题。

学生做在课本上。之后学生反馈。错的要求说明理由。

四、小结

这节课你学习了什么内容?圆锥有怎样的特征?圆锥的体积怎样计算?为什么?

学生交流

五、作业

练习四第3题。

圆锥的体积教案篇3

一、教材分析

圆锥的体积这部分教学内容是属于小学数学空间与图形的领域.这部分内容的教学是在圆柱体体积教学的基础上进行的,教学时应加强学生动手操作、观察等活动让学习经历探索知识的过程,培养学生自主解决问题的能力,从而加强学生对所学知识的深刻理解.本节课的内容对今后学生学习立体图形有着重要的作用.

二、教学过程

(一)引出课题

1、师:同学们,看一看祝老师手中拿的是什么?

生:这是一个圆锥体.

2、师:你们能不能用以前的办法求出这个圆锥体的体积呢?

生:可以,我们可以用排水法来求出它的体积.

师:如果是一个很大的一个圆锥体还用这种办法,会怎样?

生:能求出来但会很麻烦.

师:很好.那么我们今天就共同研究求圆锥体体积的办法.(板书课题)

(二)实验探究推导公式

1、师:同学们,想求圆锥体的体积它会与哪些图形有关呢?

生:圆柱体

2、师:请同学们拿出学具,选择能够推导出圆锥体体积公式的学具并把你们的发现记录下来.(小组合作)

学生汇报:我们组选择一个圆锥体、一个圆柱体和一些水进行实验.我们发现圆柱体的体积是圆锥体体积的5倍多一些.

师:其他种和他们一样吗?

生:不一样.

师:谁还愿意汇报.

生:我们小组选择了一个等底等高的圆锥体、圆柱体和一些大米进行实验我们发现圆柱体的体积是圆锥体体积的3倍.

生汇报:我们小组也选择了等底等高的圆锥体圆柱体和一些细沙进行实验.我们把细沙装满圆锥体后倒入和它等底等高的圆柱体内,正好倒了三次没有剩余.我们得出圆柱体的体积是圆锥体体积的3倍

2、师:为什么你们在实验的时候都用圆锥体和圆柱体,得到的是两种不同的结论呢?

生:因为第一组用的不是等底等高的圆柱体和圆锥体所以得到的结论和我们两组不同。

3、师:只有在等底等高的前提下,圆柱体和圆锥体的体积存在这样的关系。即圆锥体的体积等于圆柱体体积的三分之一。如果用字母V来表示圆锥体的体积,s表示它的底面积,h表示它的高。V=1/3sh。

(三)巩固练习

1、判断

(1)圆柱体的体积是圆锥体体积的3倍。 ( )

(2)圆柱体的体积大于与它等底等高的圆锥体的体积。 ( )

(3)圆锥体的高是圆柱体的高的3倍,它们的体积相同。 ( )

2、解决问题

(1)有一个圆柱体它的体积是36立方厘米,与它等底等高的圆锥体是多少?

(2)有一个圆锥体沙堆,底面积是18平方米,高6米求沙堆的体积?

(3)一个圆锥体的体积是30立方分米,底面积是20平方分米,求它的高是多少分米?

三、教学反思

这节课上,我以高昂的激情,丰富的执教经验,幽默风趣的语言,充分调动了学生的学习情趣,学生的学习积极性得到了充分的发挥。真不失为一节让人回味的好课。

1、难点分散。

针对学生对圆锥体刚刚有了初步的认识,又有了对圆柱体体积的计算的基础,对圆锥体的体积的计算没有充分的认识。教者采用了直观的导入:出示一个圆锥体,提问:“你认识这个物体吗?谁能用以前的学习方法,求出它的体积?”学生回答后。教者紧接又发问:“如果是较大的物体怎么办?”一石激起千层浪,引人入胜的问话,强烈的激起了学生的求知欲,学生进入了学习的最佳境界。

2、导入的新颖。

情境的创设使学生进入了有序的思维境地,教者将问题抛给了学生,放手让学生用手中的学具自主地实验。在实验中发现、在发现中探索、在探索中交流,给学生的思维发展创设了空间,学生的观点和意见得以自由的发表。教师的适时的点拨,解决了这节课的难点,即:必须是等底等高的圆锥和圆柱体,它们的体积关系才存在----等底等高的圆锥体的体积是圆柱体的三分之一。

3、教学手段和练习配套。

教者用考一考、请听题等手段对本节课的内容进行强化。一方面,使学生的情绪围着教者的教学目标转,学生的学习兴趣极高,每个人都能进行有效的思维;另一方面,从学生的认知过程看,符合了直观——抽象——概括的认知过程,按照学生的认知规律组织教学。

4、学生一直处在积极的学习状态中,整个教学过程注重了学生参与学习的积极性,让学生重参与公式的推导过程而不是结论,每个学生的学习兴趣的调动是这节课的一个亮点。学生始终处在思维十分活跃的状态中,高潮迭起,一波连着一波,让人体会到了新课标下的新课堂的教学魅力。教者的教学魅力尽现于此,得到了淋漓尽致的发挥。

圆锥的体积教案篇4

教学目标:

1、通过动手操作参与实验,发现等底等高的圆柱体和圆锥体之间的关系,从而得出圆锥体的体积公式。

2、能运用公式解答有关的实际问题。

3、渗透转化、实验、猜测、验证等数学思想方法,培养动手能力和探索意识。

教学重点:通过实验的方法,得到计算圆锥体积的公式。

教学难点:运用圆锥体积公式正确地计算体积。

教学过程:

一、创设情境,引发猜想

在一个闷热的中午,小白兔买了一个圆柱形的雪糕,狐狸买了一个圆锥形的雪糕,这两个雪糕是等底等高的。这是狐狸要用它的雪糕和小白兔换。你觉得小白兔有没有上当?如果狐狸用两个雪糕和小白兔换你觉得公平吗?假如你是小白兔,狐狸有几个雪糕你才肯和它换呢?把你的想法与小组的同学交流一下,再向全班同学汇报。

小白兔究竟跟狐狸怎样交换才公平合理呢?学习了圆锥的体积后,就会弄明白这个问题。

二、自主探索,操作实验

1、出示学习提纲

(1) 利用手中的学具,动手操作,通过试验,你发现圆柱的体积与圆锥体积之间有什么关系?

(2) 你们小组是怎样进行实验的?

(3) 你能根据实验结果说出圆锥体的'体积公式吗?

(4) 要求圆锥体积需要知道哪两个条件?

2、小组合作学习

3、回报交流

结论:圆锥的体积是等底等高的圆柱体积的1/3。

公式:v=1/3sh

4、问题解决

小白兔和狐狸怎样交换才能公平合理呢?它需要什么前提条件?

5、运用公式解决问题

教学例题1和例题2

三、巩固练习

1、圆锥的底面积是5,高是3,体积是()

2、圆锥的底面积是10,高是9,体积是()

3、求下面各圆锥的体积.

(1)底面面积是7.8平方米,高是1.8米.

(2)底面半径是4厘米,高是21厘米.

(3)底面直径是6分米,高是6分米.

4、判断对错,并说明理由.

(1)圆柱的体积相当于圆锥体积的3倍.( )

(2)一个圆柱体木料,把它加工成最大的圆锥体,削去的部分的体积和圆锥的体积比是2 :1.( )

(3)一个圆柱和一个圆锥等底等高,体积相差21立方厘米,圆锥的体积是7立方厘米.( )

四、拓展延伸

一个圆锥的底面周长是31?4厘米,高是9厘米,它的体积是多少立方厘米?

五、谈谈收获

六、作业

圆锥的体积教案篇5

教学目的:

使学生系统掌握关于圆柱和圆锥的基础知识,进一步了解圆柱和圆锥的关系,熟练运用所学公式计算解答实际问题;

教学准备:

幻灯片、电脑制图

教学过程:

一、出示课题,引人复习内容;

1.同学们,今天这节课,我们要进行圆柱体和圆锥体体积的复习;

板书课题

2.圆柱体的体积怎么求?

板书:v圆柱=sh

3.圆锥体的体积怎么求?

板书:v圆锥=1/3 sh

4.公式中的 s、h分别表示什么?1/3表示什么?

小结:求圆柱体和圆锥体的体积,首先要正确应用公式。

板书:正确应用公式

当题目中没有直接告诉我们底面积,只给出底面的半径、直径或周长时,求它们的体积必须先求出什么?

二、基础练习

根据已知条件求圆柱体和圆锥体的底面积(幻灯出示)

计算这些形体的体积:

(1)s底=1.5 平方米 h=5 米 求v圆柱

(2)s底=1.5 平方米 h=5 米 求v圆锥

(3)r=10分米 h=2 米 求v圆柱

(4)c=6.28米 h=6 米 求v圆锥

(1)、 (2)两题条件相同,所求不同;

板书:2. 圆锥体积一定要乘 1/3

(3)、 (4)两题都要先求出底面积;

板书:单位名称要统??

三、实际应用练习:

我们还可应用到生活中去解决一些实际问题:(幻灯出示)

1.一根圆柱形钢材长2米,底面周长为6.28厘米,如果1立方厘米钢重8克,100根这样的钢材重多少千克?

默读后问同学:做这道题前有没有准备工作要做?(单位要统一)

2.一个圆锥形麦堆,底面直径4米,高1.5米,按每立方米麦重700千克算,这堆麦重多少千克?

默读后问同学:要注意麦堆是什么形状?

请两位同学板演,其余在本子上自练;

3.小结:在解这两题时都用到了什么计算?

四、 提高练习:

(幻灯出示)在一只底面半径为30厘米的圆柱形水桶里,放入一段底面半径为10厘米的圆锥形钢材,水面升高了5厘米,这段钢材高为多少?

(电脑出示图案)观察水面变化情况,求什么?

1.钢材是什么形状?求圆锥体的高用什么方法?h=3v/s,3v表示什么?

2. s可以通过哪个条件求?( r=10厘米)

3.体积是什么呢?(电脑屏幕逐步演示)

(1)当钢材放入时水面上升,取出时水面下降,和什么有关?

(2)放入时水面为什么会上升?

(3)圆锥体占据了水桶里哪一部分水的体积?

(4)上升的水的体积等于什么?

(5)求圆锥形钢材的体积就是求什么?

(6)求这部分水的体积可通过哪些条件求?(r=30厘米,h=5厘米)

(7)板演,同学自练;

五、圆柱体、圆锥体之间的关系是很密切的,下面我们来研究一下:(电脑出示画面、公式)

1.当圆柱体与圆锥体等底等高时,圆柱的体积是圆锥体积的3倍;(逆向)

2.当圆柱体与圆锥体体积相等,底面积相等时,圆锥的高是圆柱的3倍;

3.当圆柱体与圆锥体体积相等,高也相等时,圆柱的底面积是圆锥底面积的1/3,圆锥底面积是圆柱底面积的3倍。

六、总结:

这节课我们复习了什么?

会计实习心得体会最新模板相关文章:

认识春天的教案5篇

5以内减法的教案5篇

小班5大领域健康领域的教案5篇

秋天的教案最新5篇

幼儿认识5的教案优秀5篇

食品的教案优秀5篇

关于背影的教案5篇

幼儿园小班数学5的教案5篇

健康安全的教案5篇

倾听的教案5篇

    相关推荐

    热门推荐

    点击加载更多
    32
    c
    105128

    联系客服

    微信号:fanwen9944
    点击此处复制微信号

    客服在线时间:
    星期一至星期五 8:30~12:30 14:00~18:00

    如有疑问,扫码添加客服微信,
    问题+截图进行提问,客服会第一时间答复。